

- (ii) Isochronism
- (iii) Hunting of governor
- (iv) Effort of a governor
- (v) Stability of a governor

1 of 2

(10 Marks)

- b. Each ball of a Governor has a mass of 1.5 kg attached to one arm of a bell crank lever. The other arms of bell crank lever. The other arms of bell crank lever lift the sleeve against the force exerted by the spring under compression which surrounds the governor spindle. Length of ball and sleeve arms are 125 and 75 mm. Fulcrum is 90 mm from the axis. Maximum and minimum radii are 115 and 75 mm. The sleeve begins to lift at a speed of 300 rpm. Maximum speed is 6% greater. Find the rate of spring or stiffness and equilibrium speed for the radius 90 mm. (10 Marks)
- 6 a. Analyze the stability of a two wheel vehicle taking left turn. Derive the necessary equations.
 - (10 Marks) An aeroplane makes a complete half circle of 50 m radius towards left when flying at b. 200 km/hr. The mass of the rotary engine and propeller is 400 kg with radius of gyration 300 mm. The engine runs at 3000 rpm counter clockwise when viewed from the rear. Determine the gyroscopic couple and its effect on the air craft. (10 Marks)
- Define the following with respect to vibration: 7 a.
 - Simple Harmonic Motion (SHM). (i)
 - Degrees of freedom. (ii)
 - (iii) Phase difference.
 - Resonance. (iv)
 - (v) Damping.
 - b. Add the following harmonic motions and check the solution graphically,
 - $\mathbf{x}_1 = 2\cos(\omega t + 0.5)$
 - $x_2 = 5\sin(\omega t + 1.0)$

(10 Marks)

(10 Marks)

- Determine the natural frequency of a spring mass system where the mass of the spring is 8 a. also to be taken into account. (06 Marks)
 - b. An oscillating system with a natural frequency of 3.98 Hz starts with an initial displacement

of $x_0 = 10 \text{ mm}$ and an initial velocity of $x_0 = 125 \text{ mm/sec}$. Calculate all the vibratory parameters involved and the time taken to reach the first peak. (14 Marks)

- State the types of damping and explain the differential equation of viscous damping. 9 a.
 - (08 Marks) b. Large guns are designed so that on firing the bavel records against a spring. At the end of the record a dash pot is engaged that allows the bavel to return to its initial position in the minimum time without oscillation. Determine the proper spring constant and the dashpot damping co-efficient for a bavel having a mass of 900 kg. Initial recorded velocity at the instant of firing is 25 m/sec and the distance recorded is 1.5 m. Also find the time required for the bavel to return to a position 0.15 m from the initial position if the time for recorded is

of time period.

(12 Marks)

- 10 a. Show that providing damping in vibration isolation is not useful when the frequency ratio is more than 1.414 or $\sqrt{2}$. (08 Marks)
 - b. A machine of total mass 68 kg mounted on springs of stiffness k = 11,000 N/cm. With an assumed damping factor $\xi = 0.2$. A piston within the machine has a mass of 2 kg has a reciprocating motion with stroke 7.5 cm and a speed of 3,000 rpm. Assuming the motion of piston to be S.H.M. Determine
 - Amplitude of machine (i)
 - (ii) Phase angle with respect to exciting force.
 - Transmissibility and force transmitted to foundation. (iii)
 - (iv) Phase angle of transmitted force with respect to exciting force.

(12 Marks)